
Deploying Apache Axis in Mission-Critical Applications

Deploying Axis
in Mission-Critical Environments

Eugene Ciurana
eugenex@walmart.com
http://eugeneciurana.com

Deploying Apache Axis in Mission-Critical Environments

When should I suggest web services?
 When an application involves two or more systems:

• Different geographical locations

• Different programming languages

• Different machine architectures and data formats

 Interactions between those systems are stateless
• Better scalability by implementing zero intermediate steps

• No system behaviour is prescribed by the messages

 Messages are constrained by an agreed schema

 Interfaces are universally available to all
consumers and servers

Deploying Apache Axis in Mission-Critical Environments

Common web services architectures
 Two general types of web services

• REST

• SOAP

 REST (Representational State Transfer)
• Based on the concept of web resources

• A resource is anything that has zero or more representations

addressable through a URI

• Simple messages can be encoded in the URI itself

• Other messages are in XML, normalized through the use of XML

Schema or any other schema

• All interfaces use HTTP (GET, POST, PUT, DELETE)

Deploying Apache Axis in Mission-Critical Environments

Common web services architectures
 SOAP (Simple Object Access Protocol)

• RPC

• Web services

 SOAP RPC
• Used for tunneling application semantics and system behaviour through a generic

interface

• RPC applications are not interoperable -- tend to become “custom cases”

 SOAP web services

• Document, not behaviour, specific

• Provide an envelope that contains the service semantics in an interoperable manner

• Use WSDL (web service definition language)

• All messages should be encoded by SOAP at all levels of communication

Deploying Apache Axis in Mission-Critical Environments

Selecting a web services architecture
REST SOAP

Defined as a solution to a problem - it works,

it’s elegant

Standards-based (W3C) technology - it’s

elegant in a “big framework” way

Uses HTTP verbs Uses HTTP, FTP, SMTP, etc.

Philosophy: everything is a URI Philosophy: formal definition of the

envelope, message, protocols

Tools: simple! Can be debugged with a web

browser

Tools: vendors and consultants love it. Nice

and complicated, dedicated tools

Security through HTTP authentication or

HTTPS

Security through HTTPS and/or W3C web

service additions (WS-*) and/or app

server setup

Good choice if lots of platforms are involved,

basic data exchange applications

Good choice if the systems involved must

use their advanced capabilities between

homogeneous systems

Programmers work with XML directly Programmers work with native objects that

are mapped by the system to XML for

data exchange (may require tools)

Deploying Apache Axis in Mission-Critical Environments

Heterogeneous systems services
 Best use of web services? Stateless data exchanges

between heterogeneous systems
• Remote procedure calls (stateful)? CORBA or RMI are better solutions

• Systems at both ends have the same architecture? Use “native”
serialization

 Examples:
• Java servers talking to Perl clients over REST

• Java clients talking to .Net servers using SOAP

• Java clients, Java servers - use RMI or native serialization instead

 Don’t make things more complicated than they need
to be!

Deploying Apache Axis in Mission-Critical Environments

SOAP with Axis
 Axis is the Apache solution for SOAP web services

 Its biggest advantage is that the developers don’t
need to bother with SOAP or XML -- Axis handles

that transparently
• Java

• C++

 Use the Apache version or vendor-supported

• IBM

• BEA

• others

Deploying Apache Axis in Mission-Critical Environments

SOAP with Axis
eCommerce

Digital Photo

checkout service

Digital Photo

consumer

The application sees objects native to

the language and platform

Java

Objects

C#/

ASP

Objects

Apache Axis

SOAP

.Net

Run-time

The run-time converts objects to XML using

XSD schemas for max. portability

Objects

serialized

to XML

Microsoft Internet

Information

Services

HTTPInternetHTTPTomcat

Objects

serialized

to XML

Deploying Apache Axis in Mission-Critical Environments

Axis pre-requisites
 You must know all of the following:

• Java: servlets, applications, classes, .jars, and where they are

deployed on an application server

• How to start and deploy applications on your application server

• Core HTTP and error codes, including basic authentication

• Basic XML

 Things not to do:
• Don’t try to learn all these concepts through Axis

• Don’t unleash programmers to do Axis/web services if they’re

new to Java, regardless of how experienced they might be
otherwise

Deploying Apache Axis in Mission-Critical Environments

Axis configuration and deployment
 App servers are different; check your vendor’s

documentation

 Set up:
• Libraries (including XML parsers)

• Start the app server

• Validate that Axis is running

 Test a SOAP end point

• Install new web services

 Use web service deployment descriptors

• Full instructions: http://ws.apache.org/axis

 The rest of this presentation assumes that Axis is

properly installed and configured

Deploying Apache Axis in Mission-Critical Environments

Axis web services overview

web_service.xsd

XSD = XML Schema Definition

Rules for describing app objects

as XML

Import into

web_service.wsdl

WSDL = web services

description language

document or procedure information

Some development shops

like to embed these two

files

together; not a good idea

in general.

WSDL2Java

*.java
*.java
*.java javac

Process

*.java
*.java
*.class

App Serverweb_service.wsdd

Deployment descriptor

used by the app server

server-

config.wsdd

Deploying Apache Axis in Mission-Critical Environments

Contents of an XSD file
 Some tools and some programmers include the schema

information in the WSDL
• That’s usually not a good idea because it couples the web services interface with the

documents being exchanged

 Some programmers like to start with an object or data
model, then map that to XSD/XML using an automated tool

• This is also not a good idea in general because different languages may have slight data

representation incompatibilities when mapped to XSD

 Start with the XSD file, then generate your business objects
from it

• A common schema is a better foundation than native business objects (Java,
C#, Objective-C, whatever) <-- collections example

• It’s easier to generate Java/C#/C++/etc. from XSD than viceversa

Deploying Apache Axis in Mission-Critical Environments

Contents of an XSD file

Internet

eCommerce

Digital Photo

checkout service

Apache Axis

SOAP

Tomcat

Digital Photo

consumer

.Net

Run-time

Microsoft Internet

Information

Services

Java

Objects

C#/

ASP

Objects

Objects

serialized

to XML

HTTP HTTP

The application sees objects native to

the language and platform

The run-time converts objects to XML using

XSD schemas for max. portability

Objects

serialized

to XML

RequestData
cookie: String
vendorID: String

Order
groupID : String
groupName: String

1

1

0..1

*
Line

vendorCartID : long
vendorItemID: long
quantity : int
price : float

NumericString
[0..9]*

1

1

ResponseData

cookie: String
redirectURL: String

Deploying Apache Axis in Mission-Critical Environments

Contents of an XSD file
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.mycompany.com/services/createcart"
 xmlns="http://www.mycompany.com/services/createcart">

 <xs:element name="RequestData" type="RequestData"/>

 <xs:complexType name="RequestData">
 <xs:all>
 <xs:element name="CustomerCookieValue" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="VendorId" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="Order" type="Order"
 minOccurs="1" maxOccurs="1"/>
 </xs:all>
 </xs:complexType>

 <xs:complexType name="Order">
 <xs:sequence>
 <xs:element name="Group" type="Group"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Group">
 <xs:sequence>
 <xs:element name="GroupId" type="xs:long"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="GroupName" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="Line" type="Line"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Line">
 <xs:sequence>
 <xs:element name="VendorCartId" type="xs:long"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="VendorItemId" type="xs:long"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="UPC" type="NumericString" minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="Quantity" type="xs:int" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Price" type="xs:float" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="ResponseData" type="ResponseData"/>

 <xs:complexType name="ResponseData">
 <xs:all>
 <xs:element name="CustomerCookieValue" type="xs:string" minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="RedirectURL" type="xs:string" minOccurs="1"
 maxOccurs="1"/>
 </xs:all>
 </xs:complexType>

 <xs:simpleType name="NumericString">
 <xs:restriction base="xs:string">
 <xs:pattern value="([0-9])+"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

Deploying Apache Axis in Mission-Critical Environments

Contents of a WSDL file
 Specification by IBM and Microsoft for describing

web services in a structured way

 It tells:
• The interface to the service

• Where the service is located

• The data types used by the service

 Axis supports WSDL...
• by providing a browser-ready mechanism to view service descriptions

• Through the Java2WSDL tool to generate descriptions from Java classes

• Through the WSDL2Java tools to generate Java classes, proxies, and
skeletons for the services in the WSDL

Deploying Apache Axis in Mission-Critical Environments

Contents of a WSDL file
<definitions targetNamespace="http://www.mycompany.com/services/createcart"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:tns="http://www.mycompany.com/services/createcart"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:types="http://www.mycompany.com/services/createcart">

 <import namespace="http://www.mycompany.com/services/createcart"

 location="CreateCartService.xsd"/>

 <message name="createCartRequest">

 <part name="parameters" element="types:RequestData" />

 </message>

 <message name="createCartResponse">

 <part name="parameters" element="types:ResponseData" />

 </message>

 <portType name="CreateCartPortType">

 <operation name="createCart">

 <input message="tns:createCartRequest" />

 <output message="tns:createCartResponse" />

 </operation>

 </portType>

 <binding name="CreateCartSOAPBinding" type="tns:CreateCartPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <operation name="createCart">

 <soap:operation style="document"

 soapAction="createCart" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

 </operation>

 </binding>

Deploying Apache Axis in Mission-Critical Environments

Contents of a WSDL file
 <service name="CreateCartService">

 <port name="CreateCartSOAPPort"

 binding="tns:CreateCartSOAPBinding">

 <soap:address location=

 "http://www.mycompany.com/services/CreateCartSOAPPort" />

 </port>

 </service>

</definitions>

Deploying Apache Axis in Mission-Critical Environments

Putting it all together
 WSDL2Java - stubs, skeletons and data types

from WSDL

WSDL clause Generates...

Type section Java class

A holder if the type is used as

an input/output parameter

Port type Java interface

Binding Stub class

Service Service interface

Service locator implementation

Deploying Apache Axis in Mission-Critical Environments

Putting it all together

web_service.xsd

XSD = XML Schema Definition

Rules for describing app objects

as XML

Import into

web_service.wsdl

WSDL = web services

description language

document or procedure information

WSDL2Java

deploy.wsdd
Group.java
Line.java
makefile
NumericString.java
Order.java
RequestData.java
ResponseData.java
undeploy.wsdd
CreateCartPortType.java
CreateCartService.java
CreateCartServiceLocator.java
CreateCartServiceTestCase.java
CreateCartSOAPBindingImpl.java
CreateCartSOAPBindingStub.java

[pr3d4t0r@mac createcart]$ make

RequestData
cookie: String
vendorID: String

Order
groupID : String
groupName: String

1

1

0..1

*
Line

vendorCartID : long
vendorItemID: long
quantity : int
price : float

NumericString
[0..9]*

1

1

ResponseData

cookie: String
redirectURL: String

Deploying Apache Axis in Mission-Critical Environments

Putting it all together

/**
 * Order.java
 * This file was auto-generated from WSDL
 * by the Apache Axis WSDL2Java emitter.
 */

package com.mycompany.www.services.createcart;

public class Order implements java.io.Serializable {
 private com.mycompany.services.createcart.Group[] group;

 public Order() { }

 public com.mycompany.services.createcart.Group[] getGroup() {
 return group;
 }

 public void setGroup(com.mycompany.services.createcart.Group[] group) {
 this.group = group;
 }

 // Type metadata
 private static org.apache.axis.description.TypeDesc typeDesc =
 new org.apache.axis.description.TypeDesc(Order.class);

 static {
 String namespaceURL = "http://www.mycompany.com/services/
createcart";

Example: Order.java
 typeDesc.setXmlType(new javax.xml.namespace.QName(
 namespaceURL, "Order"));
 org.apache.axis.description.ElementDesc elemField =
 new org.apache.axis.description.ElementDesc();
 elemField.setFieldName("group");
 elemField.setXmlName(new javax.xml.namespace.QName("",
 "Group"));
 elemField.setXmlType(new javax.xml.namespace.QName(
 namespaceURL, "Group"));
 typeDesc.addFieldDesc(elemField);
 } // class initializer

 /**
 * Return type metadata object
 */
 public static org.apache.axis.description.TypeDesc getTypeDesc() {
 return typeDesc;
 }

 /**
 * Get Custom Serializer
 */
 public static org.apache.axis.encoding.Serializer getSerializer(
 java.lang.String mechType,
 java.lang.Class _javaType,
 javax.xml.namespace.QName _xmlType) {
 return
 new org.apache.axis.encoding.ser.BeanSerializer(
 _javaType, _xmlType, typeDesc);
 }
} // end of Order class

Deploying Apache Axis in Mission-Critical Environments

Putting it all together

java org.apache.axis.wsdl.WSDL2Java -s -v -a -o ./src -p \
 com.mycompany.services.createcart ./htdocs/services/createcart/CreateCartService.wsdl

Parsing XML file: ./htdocs/photo/services/createcart/CreateCartService.wsdl

Generating ./src/com/mycompany/services/createcart/ResponseData.java
Generating ./src/com/mycompany/services/createcart/RequestData.java
Generating ./src/com/mycompany/services/createcart/Group.java
Generating ./src/com/mycompany/services/createcart/Order.java
Generating ./src/com/mycompany/services/createcart/Line.java
Generating ./src/com/mycompany/services/createcart/CreateCartService.java
Generating ./src/com/mycompany/services/createcart/CreateCartServiceLocator.java
 CreateCartSOAPBindingImpl.java already exists, WSDL2Java will not overwrite it.
Generating ./src/com/mycompany/services/createcart/CreateCartPortType.java
Generating ./src/com/mycompany/services/createcart/CreateCartSOAPBindingStub.java
Generating ./src/com/mycompany/services/createcart/deploy.wsdd
Generating ./src/com/mycompany/services/createcart/undeploy.wsdd

 The stubs and skeletons will not be overwritten if they are not directly

dependent on the WSDL or if they are intended for end-user updates

Business
logic is implemented in this file;

the stub is only generated the very
first time that WSDL2Java runs.

Deploying Apache Axis in Mission-Critical Environments

Putting it all together
 So it’s set up... how do I test if it’s working?

* SOAPMonitorApplet - Axis
* TCPMonitor - Axis
* Web browser
* Ethereal, Sniffer, etc.

You may need participation
from the consumers to monitor
the traffic at their end.

Deploying Apache Axis in Mission-Critical Environments

Putting it all together
 So it’s set up... how do I test if it’s working?

* SOAPMonitorApplet - Axis
* TCPMonitor - Axis
* Web browser
* Ethereal, Sniffer, etc.

You may need participation
from the consumers to monitor
the traffic at their end.

Logs... like /var/log/httpd/tomcat.log

 1537 AxisFault
 1538 faultCode: {http://xml.apache.org/axis/}Client
 1539 faultSubcode:
 1540 faultString: No such operation 'RequestData'
 1541 faultActor:
 1542 faultNode:
 1543 faultDetail:
 1544 {http://xml.apache.org/axis/}hostname:eciurana-linux.mycompany.com
 1545
 1546 No such operation 'RequestData'
 1547 at org.apache.axis.message.SOAPFaultBuilder.createFault(SOAPFaultBuilder.java:221)
 1548 at org.apache.axis.message.SOAPFaultBuilder.endElement(SOAPFaultBuilder.java:128)
 1549 at org.apache.axis.encoding.DeserializationContext.endElement(DeserializationContext.java:1087)

Deploying Apache Axis in Mission-Critical Environments

Securing Axis
 Pundits played chicken little when it comes to

security (i.e. Schneier and Siddiqui, among
others)

 Web services are as secure or insecure as you
want to make any other web-related interaction

• Indeed, they can be secured further

 Secure the server based on common sense,
application of Axis tools, and other resources
available in your system

Deploying Apache Axis in Mission-Critical Environments

Securing Axis
Apache Axis recommendations

Disguise Remove any headers that identify Axis in the

response

Cut down the build Rebuild Axis without unnecessary bits like

‘instant SOAP service’

Rename things AxisServlet, AdminService, etc. are in well-

known locations; change them

Stop AxisServlet listing services Change the Axis configuration files

Keep stack traces out of the responses Axis has the ability to send stack traces

across the wire for troubleshooting; avoid

this

Stop auto-generating WSDL files Use configuration parameters for this

Use servlet 2.3 filters Add arbitrary authentication parameters to

prevent tampering with Axis

Leverage your logs Logs are your friends; use them either form

your code, log4j, etc.

Deploying Apache Axis in Mission-Critical Environments

Securing Axis
Apache Axis recommendations

Run Axis with reduced Java rights Axis doesn’t need access to anything other

than server-config.wsdd and a temporary

storage for JWS files; everything else

should be locked down

Run the web server with reduced rights

Monitor load Load monitors are excellent for detecting DoS

attacks; use AxisBaseServlet to monitor

Axis performance

IDS systems Honeypots and intrusion detection systems

should be part of a production

environment

Monitor the mailing lists Axis-Dev and others discuss potential issues

in a timely manner

Deploying Apache Axis in Mission-Critical Environments

Securing Axis
 As you can see, security wasn’t a priority

• IBM and other third parties provide WS extensions for security

 Nothing wrong with a couple of external
approaches

• Use SSL

• Use filters for session authentication

 Axis over SSL involves these steps:
• Configure Java Secure Socket Extensions’ keystores

• Generate the appropriate certificates

• Configure your servlet container to handle SSL communications

• Configure Axis to handle basic authentication

Deploying Apache Axis in Mission-Critical Environments

Securing Axis
 As you can see, security wasn’t a priority

• IBM and other third parties provide WS extensions for security

 Nothing wrong with a couple of external
approaches

• Use SSL

• Use filters for session authentication

 Axis over SSL involves these steps:
• Configure Java Secure Socket Extensions’ keystores

• Generate the appropriate certificates

• Configure your servlet container to handle SSL communications

• Configure Axis to handle basic authentication

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Protected Area</web-resource-name>
 <!-- Define the context-relative URL(s) to be protected -->
 <url-pattern>/services/createcart</url-pattern>
 <!-- If you list http methods, only those methods are protected -->
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <!-- Anyone with one of the listed roles may access this area -->
 <role-name>MyConsumer</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Protected Area</realm-name>
 </login-config>

Deploying Apache Axis in Mission-Critical Environments

Securing Axis
Begin

Initialize IP

validation DB

Initialize

logging and

diagnostics

Initialize the

filter's valid IP/

service URI

cache

Receive

web

service

request

URI in

lookup list

Ignore; let

request

proceed

A

A

N

o

IP/URI

match

Send

503 to

client

A

SSL

validate

N

o

N

o

Ye

s

Ye

s

Ye

s

Let request

proceed

A

B

B

An additional
way of securing
web services
could be through
the use of a
servlet filter.
The filter can
check things like
valid IP
addresses against
a database, like
the filter shown
in this diagram...

Someone suggested using
Apache’s httpd.conf to block
or allow certain IPs to access
the web service... why is this
not a good idea?

Deploying Apache Axis in Mission-Critical Applications

Eugene Ciurana
eugenex@walmart.com
You can find this presentation at:
http://eugeneciurana.com/musings/JavaInAction.html

Q&A

Deploying Axis
in Mission-Critical Environments

